High Performance Hypercube Communications

Gregory Buzzard and Trevor Mudge*

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2110

Abstract

In this paper we present a high performance message transport
scheme that is based upon packet routing. The advantages of
our scheme are derived from two observations. The first is
thar given sufficient support from communications hardware,
decreasing the message latency time can be much more im-
portant to total program execution time than increasing the
bandwidth. The second observation is that, from the stand-
point of message latency, existing routing strategies tend not
to make productive use of much of their available link capac-
ity. The scheme that we propose addresses these issues and
leads to substantial performance improvements across a broad
range of message loads.

1 Introduction

Hypercube multiprocessors are scalable to very large num-
bers of processors, in part, because they avoid the memory
contention problems that limit the size of shared memory ma-
chines. Instead of communicating through a shared memory,
hypercubes pass messages between distributed memories over
serial links. For algorithms in which there is a high degree
of data sharing this mode of communication can also become
a limitation. Techniques to achieve fast communications are
essential in the application of hypercubes to problems with
high degrees of data sharing.

This paper begins by describing the communication sys-
tem requirements of parallel software. We then offer a set
of communication instructions that both implement these re-
quirements and that are suitable for efficient architectural im-
plementations. Next, we summarize the results of an inves-
tigation that we have made into the usefulness of various

“This work was supported in part by Department of Defense grant
nuntber DOD-MDA904-87-C-4136

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/for specific permission.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed .for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-273-X/88/0007/0600 $1.50

600

general design alternatives for message transport mechanisms.
Based upon this summary and the software requirements, two
schemes are selected for further investigation; one is worm-
hole routing, the second is our packet-based scheme. The
drawbacks of the wormhole scheme are then pointed out, and
an imitial justification for our scheme is given. We then de-
velop our scheme further. Finally, simulation results for the
two schemes are presented and discussed.

2 Software Issues

In this section we identify three requirements of parallel soft-
ware that we would like to see met by the underlying com-
munications architecture. The first of these is the support for
arbitrary length messages. This is a basic requirement of most
communication systems. At the level of the application pro-
gram one program statement should suffice to send a message
of any size to any destination node. If support for such mes-
sages is not provided by the architecture, system software must
take the responsibility for providing this appearance to the ap-
plication program. Several time consuming context switches
would then be required to reassemble the message. Thus it
is desirable that support for arbitrarily large messages be pro-
vided by the architecture.

The second requirement is that communication operations
be handled with a minimal number of user executable ma-
chine instructions. Typically such operations are performed in
an operating system call. The motivations for performing op-
erations within the context of operating system calls are to pro-
vide security and to facilitate the sharing of resources. Neither
security nor sharing are requirements of single user operating
systems. If muldtasking is demonstrated to be cost effective
in a hypercube environment the communication instruction
semantics that we offer below can still handle multiple si-
multaneous communications without direct operating system
intervention. The architectural support for multitasking would
consist of informing the operating system at the end of mes-
sage send and receive operations so that task scheduling op-
erations may be performed, if they are necessary. In essence,
we would like to have communication operations treated like
co-processor floating point instructions. This is motivated by a
destre 10 eliminate the context switch and call/retumn overheads
for communications that are incurred on existing systems.

queue link

queue link

destination
type
length

buffer pointer

completion flag

Figure 1: Send header block.

Finally, we would like to be able to use message data as
it arrives, rather than having to wait until the entire message
is received. Many parallel algorithms access message data in
sequential order. For such algorithms, especially those that re-
ceive large messages, this allows us to further overlap commu-
nications with computations. The major design consequence
of this scheme is that the communication system need only
maintain a point-to-point bandwidth that is equal or greater to
the consumption rate of data. Once this bandwidth require-
ment is met, the remaining design decisions can be made to
minimize message latency. Clearly, though, for such a scheme
to be useable we must have a mechanism to prevent the ac-
cessing of data before it has arrived.

2.1 Communication Instruction Semantics

The instruction semantics that we propose below assume a hy-
percube of 2" nodes; at each node there is a node CPU, a node
memory, and a communication co-processor. The instruction
set architecture of the communication co-processor is intended
to provide a basic efficient interface. This interface should be
useable with a minimum of compiler and library support.

Send. The send instruction requires a pointer to a message
header block in which the user specifies message destination
and length values, a pointer to the message buffer, and an
optional message type value. This block should also contain
space for a completion flag and two queue links for use by
the communication processor. If the communication processor
cannot immediately handle the request, the message header
block is enqueued in a wait list for later processing. The
completion flag is set to 1 once the message send is in progress,
and to 3 once the send is complete. A diagram of the message
header block for the send instruction is shown in Fig. 1.

Broadcast. Broadcasts occur frequently in numeric codes.
Several efficient algorithms are known {HJ86,SWar]. How-
ever, none have yet been incorporated into hypercube hard-
ware designs. An integrated architectural solution would elim-
inate the need to involve node CPUs in the dissemination of
the broadcast message. It would also lessen the bandwidth re-
quirement between the communication network and the node

601

queue link

queue link

type
length

buffer pointer

completion flag

Figure 2: Broadcast header block.

memories because the need to forward the message from the
node memory is eliminated. The fields within the message
header block and the completion flag actions for the broadcast
are similar to those for the send instruction, except that a des-
tination field is no longer required. Message transmission will
proceed in approximate synchrony as outbound ports become
available. This synchrony arises from the fact that the transfer
from node memory to communication chip occurs only once,
regardless of the number of communication processor output
ports that the message is sent through. Broadcast messages
will have specially tagged headers so that later communication
chips will be able to recognize the potential need to forward
the packet through more than one output port. A diagram
of the message header block for the broadcast instruction is
shown in Fig. 2.

The special case of broadcasts to near-neighbors will be
handled with a separate instruction. Near-neighbors are nodes
that lie one link away from each other. The number of near-
neighbors of a node is equal to n, the degree of the cube.
For this instruction we require a list of near-neighbor destina-
tions and a value indicating the number of entries in the list,
rather than the implicit destinations assumed for the cube-wide
broadcast instruction described above. The remainder of the
instruction arguments and the completion flag actions are sim-
ilar to the send instruction. Message transmission will, again,
proceed in approximate synchrony as described above for the
general broadcast case. A diagram of the message header
block for the near-neighbor broadcast instruction is shown in
Fig. 3.

Receive. The receive instruction also requires a pointer to a
message header block. In this block the user specifies message
source and type values (either of which may assume the value
any), the length of the message buffer, and a pointer to the
message buffer. This block should also reserve space for the
completion flag to be written by the communication proces-
sor. A null message pointer indicates that the user would like
to use a system allocated message buffer. This is useful in a
few cases: when the user suspects that the message may have
already begun to arrive and does not want to incur a block
move overhead; when the user does not want to be burdened
with managing message buffers; and when the length of the
incoming message is unknown. In such cases, the communi-
cation processor writes the address of the message buffer and

queue link

queue link

type
length

buffer pointer

completion flag

number of destinations

destination 1

destination n

Figure 3: Near neighbor broadcast header block.

queue link

queue link

source

type
length

buffer pointer

completion flag

Figure 4: Receive header block.

its length into the message header block, and the user assumes
responsibility for retuming the buffer space, via the buffer re-
lease instruction, to the system. When a valid message buffer
pointer is provided the specified message buffer will be used.
If the message has already begun to arrive it will be copied
from the system buffer to the user specified buffer. The com-
pletion flag is set to 1 once the message receive is in progress,
and to 3 once the reception is complete.

The completion flag together with the message overrun ex-
ception mechanism allow the user to begin processing arriv-
ing data before the message reception is complete. This is
accomplished by waiting for the completion flag to indicate
receive-in-progress before starting to process the data. If a
memory request is made before the data arrives an excap-
tion will occur. This request may be continually retried until
the data arrives. The more conservative user may just wait
on the message completion flag before processing the mes-
sage. The flags are specified such that a process waiting for
the receive-in-progress indication may also be released by the
reception-completed flag. A diagram of the message header
block for the receive instruction is shown in Fig. 4.

602

Buffer Release. System buffer space is returned via the
buffer release instruction. The instruction requires only a sin-
gle operand that points to the buffer.

3 General Message Transport Issues

In this section we present the results of a general investi-
gation that we have made into design alternatives for mes-
sage transport mechanisms. The base cases in our comparison
are datagram', datagram with cut-through [KK79], and cir-
cuit switching. For a further discussion of message transport
mechanisms see {RF87]. The specific protocol that we have
simulated for the datagram with cut-through case, in which
the forwarding of a message may begin before its storage
at an intermediate node has completed, is analogous to the
one described in {ABGR5]. Our implementation of circuit
switching is persistent. That is, blocked circuits do not sur-
render their resources and try again. Messages wait until the
blocking condition disappears. In this sense it is similar to
wormhole routing [Dal86]. With adaptive routing schemes
such behavior can lead to deadlock. Several deadlock-
free routing schemes exist for store-and-forward transport
schemes [Gel81,Gun81 MS80,TU79,Tou80). A deadlock-free
routing scheme for k-ary n-cubes employing wormhole rout-
ing has also been developed [DS87]. For our simulation
we break potential deadlocks by assigning priorities to mes-
sages in order of their creation and requiring that a message
never be allowed to block another message of higher priority
(earlier creation) unless it is in the process of transmitting.
Though there are several methods for avoiding or breaking
deadlocks, we feel that this scheme should yield simulation
results that provide a fair basis for comparison. We have
also considered the additional effects of adaptive routing and
independent simultaneous bidirectional communications. Hy-
percube communication protocols typically employ some form
of handshaking that requires acknowledgement information to
be passed from a message destination back to its source. Since
the original sending node may not continue to process mes-
sages on a given link until any expected acknowledgements
are received, true bidirectional communications may be diffi-
cult to achieve if the acknowledgement information is blocked
behind another message on the retum link. For further dis-
cussion on this topic see [MBAS7]. By allowing independent
simultaneous bidirectional communications in our simulation
model we can evaluate the benefit of removing acknowledge-
ment or confirmation messages from the link that runs in the
opposite direction of the the original message. Such a scheme
may be implemented at the expense of additional circuitry at
the I/O pads of a custom chip. Alternatively, Intel circum-
vents this problem by interspersing small amounts of control
information, which may include acknowledgements, into the
data stream of the link that runs in the opposite direction of
the original message.

When considered by themselves, all three of the trangport
schemes that we have evaluated have significant drawbacks.

In this context datagram refers to a store-and-forward based transport
scheme which stores and forwards messages in their entirety, ie., the
messages are not split into smaller packets

However, the primary purpose of this particular investigation
was to determine the impact of various design decisions, not to
advocate the adoption of any specific case. Nevertheless, the
following general conclusions can be drawn. The inability of
circuit switching to gracefully degrade in perforrance under
heavy traffic loads renders it a poor choice for any environ-
ments where moderate to heavy bursts of traffic are likely to
occur. Datagrams, both with and without cut-through, require
buffers that are many times larger than the largest message to
maintain reasonable performance. Maximum buffer require-
ments, without flow control, can quickly become excessive:
ranging from about 100 K-bytes for light loads to in excess of
200 K-bytes for heavier traffic for messages averaging 8192
bytes in length. Clearly, for any store-and-forward based
transport scheme to be viable it must employ flow control.
Even with flow control, however, datagram based schemes
require buffers at least as large as the largest allowable mes-
sage size at each node. The advantages of cut-through are
significant for all but the heaviest traffic conditions. Under
moderate to heavy traffic conditions the most significant per-
formance improvement, for both of the datagram cases, as well
as for circuit switching, is gained by providing non-interfering
bidirectional links. For datagrams, adaptive routing was also
helpful, particularly in conjunction with non-interfering bidi-
rectional links, for all but heavy traffic cases with small mes-
sages. In these cases, adaptive routing lead to performance
decreases which were particularly significant for the uni-link
case. The benefits of adaptive routing were typically much
smaller than those of bidirectional links for all but the Light
traffic cases. Adaptive routing, in conjunction with circuit
switching, showed similar results, except that performance de-
creases occurred for small messages at all traffic levels.
Message transport tradeoffs are also being studied by Reed
and Grunwald [GR88]. Their work includes evaluating the
different routing mechanisms that are possible with the JPL
Hyperswitch in a JPL Mark III based computer. The general
observations from their preliminary results appear to coincide
with ours. In particular, for moderate to light traffic loads they
show the best results for wormhole and an adaptive form of
circuit routing known as K(K-1). In fact, they show very little
performance difference between the two schemes.

4 Cases for Further Evaluation

In this section we develop a selection criteria and choose the
message transport schemes that we will develop and evaluate
further. Message transport performance for random commu-
nications is improved most by providing non-interfering bidi-
rectional communications in moderate to heavy traffic and by
avoiding the store-and-forward overhead in light traffic. The
former can be provided for any of the transport schemes that
we are considering by the underlying architecture. The latter
improvement calls for considering a transport strategy based
upon some variant of circuit switching, or datagram with cut-
through. The buffer requirements of cut-through, however,
conflict with the desire to support arbitrary length messages.
Packet swirching, in which individual messages are broken
into fixed sized packets, provides a reasonable solution to this

603

conflict by limiting the buffering requirements while maintain-
ing the ability to handle arbitrarily large messages by using
a similarly large number of packets. In order to preserve the
ordering of packets within a message all packets must follow
the same route from source to destination. Altematively, one
could attach sequence numbers to each packet and reassem-
ble them in the correct order at the destination. Reassembly,
however, is a very expensive operation whose cost cannot be
justified in this context, particularly since we would like to
allow calculations at the beginning of a long packet to over-
lap its arrival. This limits the application of adaptive rout-
ing for packet based transport mechanisms. Although, as we
will show later, this limitation is not unduly restrictive. The
overlapping of communications with computations on arriv-
ing messages is a task made easier when messages arrive in
a contiguous non-interleaved fashion on a particular channel.
However, with the communication semantics that we specified
in Sec. 2, the interleaving of messages on a common chan-
nel may be accommodated at the expense of a slightly more
complex architecture.

We will further investigate two schemes. The first is worm-
hole routing, a variant of fixed route circuit switching. This
is one of the routing strategies available with the JPL Hy-
perswitch. Wormhole transports generally compare favorably
with other proposed schemes. However, they have two draw-
backs. One is their relatively poor performance for small
messages in heavy traffic. We expect that for several al-
gorithms a large proportion of messages under conditions
of heavy traffic will be of relatively short length. Cer-
tainly, most request messages in algorithms that use a re-
quest/response communication paradigm will be short. Also,
there are many amorphously structured algorithms, such as
chess [FMO*87] or programs incorporating branch-and-bound
techniques [AMS88,AC87,Qui87, WLY85], that would like to
make a random accesses to small amounts of global data. The
second drawback is that the presence of a long message can
effectively delay the delivery of other messages.

A simple example of the second drawback is illustrated in
Fig. 5 where, for two messages starting at the same time, the
circuit for the larger message gets established first, forcing the
shorter message to wait until the larger message completes for
its circuit to be established. At a high level, we can view the
message transmission time of a circuit or cut-through based
transport scheme as being proportional to M + L3, where M
is the length of the message, h is the number of hops from
source to destination, and [reflects the speed with which the
communication links can be acquired. The magnitude of 3 is
dependent upon the traffic load (i.e., number and size of active
messages), and the availability of communication resources—
in this case, links. Alternatively, if we could break messages
into packets, then interleave the packets of the two messages,
transmission time would be proportional to %(p+ ha). Where
a reflects the apparently reduced bandwidth of the link as
viewed from the message level due to the multiplexing and
additional overhead of packet headers, and p is the size of
the packets. This, of course, can be rewritten as M + %ha.
When we take into account the fact that the message packets
are pipelined through the network, the multiplicative effect of

110 111
J
101
100 A
/ T\
010 N 011
000
001
256 byt
ytes 10 Kbytes

Figure 5: Wormhole Routing Blockage.

the number of packets (%) on ha is reduced to one. Thus,
the better performing transport scheme will depend on which
of a or 3 is lower.

Returning to our simple example, we see that with worm-
hole ronting the transmission times for the long (¢;) and short
(t,) messages are:

t[= A/I[+ h

t,= M,+ hi,
And with a packet based scheme:

t = A/Il + h.al Where, oy = 1

t,=M,+ ha, where, a, ~ 2

The effect of a; is negligible due to the size of M, relative
to M,, and ¢, is slightly larger than 2 to account for the
additional overhead of packet headers. In general, the outlook
is quite not this bleak for wormhole transports. However, it is
important to note that while a tends to be, at worst, linearly
proportional to the average number of packets vying for a
link, 3 suffers additionally from the effect of link starvation.
This occurs as a result of messages being blocked after having
acquired, possibly several, links. Thus, in addition to waiting
on a given link, the waiters also hold out of service all of
the links that they have already acquired. Similar effects with
packet buffers, in the case of packet based transports can be
easily avoided with a modest number of buffers. These effects
can be seen in the results reported in Sec. 6.

The second scheme that we will consider employs a packet
based transport scheme that allows packets from different mes-
sages to be interleaved. It uses a combination of fixed and
adaptive routing in which the first packet may adaptively se-
lect its first routing step in any direction that will take closer
to its destination. All subsequent packets from the message
are routed in the same initial direction. All routing decisions,
other than the first, are determined by a fixed route. Thus,

604

packets from the same message will always arrive in order at
their destination. There are two primary costs associated with
this scheme: 1) each packet must now carry its source and des-
tination node numbers, thus lowering the effective bandwidth
for message data as discussed above; and 2) the architectural
scheme for detecting if the node CPU requests part of a mes-
sage before it arrives is more complicated than the comparable
implementation for wormhole routing. Implementation restric-
tions limit the number of concurrently arriving messages that
a communication processor can check. These checks can be
made by having multiple pairs of comparators monitor the
address bus for addresses that fall between the address of the
most recent byte received and address of the last byte expected
for messages that are actively being received. Since wormhole
messages do not interleave on individual channels, the maxi-
mum number of concurrently arriving wormhole messages is
at most n, the degree of the cube. Thus, potential overruns
can can be detected for all arriving wormhole messages with
n pairs of comparators. For packet routing, which can con-
currently receive a far greater number of packets, we would
have to maintain a cache of addresses that track the progress
of the first n messages that arrive concurrently. This cache
then feeds pairs of comparators that check these addresses
against the node CPU memory requests that appear on the
node address bus. Messages that have their arrival tracked by
entries in the comparator cache have their completion flags
marked to indicate that message arrival has begun and that
monitoring for overruns will be performed. Upon completion
of message arrival their completion flags are marked to indi-
cate reception-completed. Any message that begins to arrive
while the comparator cache is full will have its completion
flag marked only upon completion of message arrival, thus
indicating that overrun checking is not being performed for
this message. While not all arriving messages may be able to
be processed concurrently with their reception, in practice this
should not be a problem since the node CPU will still have
several arriving messages with which to overlap computations.
Further, the efficiency of the cache mechanism could be im-
proved by adding a parameter to the message header block
of the receive instruction to indicate whether or not overrun
checking is desired for the awaited message.

S Packet Transport Issues

In this section we develop further the packet transport scheme
that we introduced in the preceding section.

5.1 Sequential Bottleneck at Source

Originally, we used entirely fixed routing for all packets.
However, initial studies revealed that the performance advan-
tage of the packet based transport for heavy message traffic
was quickly lost as the average message size was increased.
Closer inspection determined that messages were blocking in
sequential order on their source nodes, just as they do for
the wormhole transport. When average message times were
computed from the time messages began to leave their source
nodes the performance advantage returned. In fact, the rela-

tive advantage was even greater than we had previously noted
because the same effect had been occurring with the shorter
messages as well.

One approach to breaking this sequential ordering is to in-
terleave the packets of messages that are waiting to be trans-
mitted from their source nodes. However, this is impractical to
implement in a fair and efficient manner, particularly when the
implementation is constrained by the fixed resources available
on a single communication chip. It is difficult to determine the
number of distinct messages that are represented by packets
presently in the queue and the location of their head packets.
Another factor that limits the speed with which messages can
be moved off of their source node is that fixed routing schemes
direct messages to half of the nodes in the cube out of a sin-
gle channel, messages to half of the remaining nodes go out
the next channel, etc. Under conditions of constant uniform
traffic, of course, this scheme makes optimal use of the links
by evenly distributing the message load from all nodes across
all links. However, in reality we expect message traffic to be
bursty and chaotic. This can lead to excessive link contention
for the most popular link by messages that are attempting to
leave their source nodes. As a simple example, with the all
other communications quiescent, a pair of simultaneously gen-
erated messages on any given node in a cube of dimension n
will collide while attempting to acquire their respective initial
links with a probability given by:

211
P’"(zn_l)

The (2—23_—1)2 term accounts for the fact that a node will not
send a message to itself. The term in the summation is derived
from the zl,‘ chance, for each message, that the kth link is
chosen.

Rather than interleaving the message with packets that have
been queuned for transmission, we have chosen to adaptively
select the first routing step for the message based upon the
shortest queue in a direction that takes the message closer to
its destination. All packets of the message still follow the same
route, however, the first step in the route is no longer fixed for
the first packet. In this case, with all the other communica-
tions quiescent, a pair of simultaneously generated messages
on any given node in a cube of dimension n will collide while
attempting to acquire their respective initial links with a prob-
ability given by:

s L

> M

211

r=(555) £ (&))

k=1

@

In this case, there is a 5; chance that the first message chooses
the kth link, and a —2'—_| chance that the second message cannot
use any of the remaining links. Comparing (1) and (2), we can
show that lim,_, Py = § and lim,, ., P, =0, also P; > P,
for all n > 2, therefore we conclude that our adaptive packet
transport scheme significantly reduces the problem of mes-

sages colliding prior to entering the communication network.

605

5.2 Deadlock Avoidance

By relaxing the fixed routing requirement we have introduced
the possibility of deadlock. Let us refer to packets that are
taking their first routing step in a direction that differs from
the direction that they would take in the fixed routing scheme
as contrary packets. Once a contrary packet has left its source
node it will be routed along a fixed path, thus we will no longer
consider it to be contrary. To avoid deadlock, we require that
at least one buffer slot for each channel in every node be either
free, or occupied with a non-contrary packet at any given time.
This guarantees that all non-contrary packets will eventually
progress to their destinations since fixed routing assures that
there are no cyclical resource dependencies. Contrary packets
exist for at most one routing step, and for any cycle through a
cube at least two nodes will not issue contrary packets. This is
assured because at least two messages (from nodes opposite
each other in the cycle) will take their first routing step in
each of the dimensions (or routing directions) represented in
the cycle. This being the case, at least two messages will
have picked the same direction that they would have under
fixed routing. Thus, contrary packets cannot form cyclical
resource dependencies and deadlock cannot occur.

5.3 Buffer and Packet Sizes

Our packet based scheme dedicates a fixed number of packet
buffers to each output port on the communications chip. Since
the total amount of packet storage that can be implemented
on a communications chip will be limitied, attempts at tun-
ing performance can be made by varying the packet size and
the number of buffers while holding the product of the two
constant. We have not yet investigated this tradeoff. The
simulation results reported below assume packet lengths of
20 bytes with 16 packet buffers per port. The packets contain
4 header bytes (two bytes each for the destination and source)
and 16 data bytes. The message length (4 bytes) and type
(2 bytes) values must appear in the first packet, thus limit-
ing the effective data length in the first packet to 10 bytes.
The required source and destination fields comprise all of the
information that is needed to route packets through the net-
work and to the correct location on the destination node. The
source field is required by the final node since packets from
different sources may be interleaved on a common port into
the destination communications chip.

6 Simulation Results

In this section we explain the simulation metrics and parame-
ters, and present and discuss the results for wormhole routing
as well as our original fixed packet routing and our quasi-
adaptive version of packet routing. The primary performance
metric presented is the average elapsed time from the moment
a message is queued for sending on its source node until it
reaches its destination. We have also individually compared
the times for messages of specific lengths and distances. These
results correlate well with the average values that are pre-
sented. All results are given for two different average message

lengths across a variety of traffic loads. As a further check,
we have also compared both the maximum times taken by
any message and the total simulation times. Neither of these
checks indicate anomalies in any of the simulation cases.

For all cases, message destinations are chosen uniformly.
The message lengths are given by an exponential distribution
with a mean of 512 bytes for the first set of results and with
a mean of 2048 bytes for the second set. The intergeneration
time for messages at each node is given by a nomal distri-
bution. For messages of each length, data was gathered at
nine different rates of message generation. For the shorter
messages the mean of the intergeneration time ranges from
1024 ticks to 9216 ticks, with two increases of 256 ticks,
followed by three increases of 512 ticks and, finally, three
increases of 2048 ticks. The variance is always equal to half
of the mean. For the longer messages the mean of the inter-
generation time ranges from 4096 ticks to 36846 ticks, with
increases of 1024 ticks, 2048 ticks, and 8192 ticks. The link
transfer rate is 2 ticks per byte and arbitration for shared
resources is assumed to take 4 ticks. These values are de-
rived from our initial thoughts on implementation. The same
pseudo-random distributions are generated for the message
destination, length, and, intergeneration time for all routing
schemes. This ensures that the kth message will be of length
! and will travel from source s to destination d starting at
time ¢ for all of the routing schemes evaluated. In all cases,
simulations are performed for hypercubes of degree 6.

The intergeneration time for messages is expressed as an
ideal link utilization value. This value is derived by calculat-
ing the total amount of link time required to handle the transfer
of all of the messages generated during the simulation. For
example, a message of length M that travels L hops will con-
tribute 2M L link ticks to the link time total. This time is
then divided by the product of the total number of links in the
hypercube and the time from the start of the simulation until
the last message is generated. This is not a “true” utilization
value in the sense that we only intergrate the total available
link capacity up until the time of the last message generation.
However, this does yield an ideal utilization value that is the
same for all transport schemes with the same simulation pa-
rameters, which is our primary objective. This is guaranteed
because the time of the generation of last message is always
the same; whereas, the total time varies somewhat for each
different routing mechanism.

The simulation results are given in Figs. 6a through 7b. The
figures for each of the two different message lengths are given
in two parts with differing vertical scales. By examining the
link utilization axis it can be seen that Figs. 6a and 6b overlap
by two data points. Similarly, with Figs. 7a and 7b. The
mean elapsed times for both the arrival for the first packet (or
16 data bytes) and the last byte are shown. This allows us to
see the effect that the packet interleaving has on both latency
and bandwidth. The first times (e.g., the line labelled firs:
wormhole) indicate message latency. The difference between
corresponding first and Jast times (e.g., last wormhole less first
wormhole) provide an indication of the message bandwidth.

For the smaller messages our initial fixed routing packet
scheme leads to message latency times that are about 70%

606

of the wormhole latency times for the 6 highest link utiliza-
tion values, and 85% of the wormmhole latency time for the
lightest value. On the other hand, bandwidth for the fixed
packet scheme ranges from about 30% of that of the worm-
hole scheme for the heavier loads to about 70% for the lighter
loads. For the larger messages, blockage at the source nodes
preclude improvements in latency times over those for worm-
hole routing. Also, the bandwidth remains consistently poor
as compared to the wormhole transport scheme—clearly this
is not a desirable situation.

The change to the quasi-adaptive packet scheme leads to
significant improvements. Message latency times become less
than 20% of the times for wormhole routing for the 2 heaviest
loads, and range to about 70% of the wormhole latency time
for the lightest load considered. Bandwidth for this scheme
ranges from about 20% of that for wormhole at the heavi-
est traffic load to about 70% at the lightest load. For the
four heaviest traffic loads the average time for the messages
to completely arrive is approximately equal to, or less than,
the average time for them to begin arriving with wormhole
routing.

The results are even better for the large messages. Message
latency stays between 18% and 25% of that for wormhole
routing across the entire range of loads. Bandwidth for the
adaptive packet scheme ranges from about 25% of that of
wormhole at the heaviest traffic loads to about 65% at the
lightest.

The decreases in bandwidth will likely have an insignificant
effect on most programs. Consider, that the NCUBE hyper-
cube with on-chip floating point hardware consumes message
data at a rate of 0.188 Mbytes per second when performing
the double precision vector operation: X = aX + Y. Peak
message bandwidth on the same system is 0.77 Mbytes per
second. Bandwidth would have to decrease by more than a
factor of four in any system with a similar calculation to band-
width ratio before performance in the above operation would
begin to be affected. Even then, we still have the advantage of
being able to start processing message data much sooner. It is
also the case that the difference in bandwidth between worm-
hole routing and our packet scheme is the least significant in
those cases where our improvement in latency times are also
least significant. Considering all of the above, it seems reason-
able to expect that most programs would be able to reap the
benefits of reduced message latency times without incurring
any costs from the effectively reduced message bandwidth by
using our quasi-adaptive packet based routing scheme.

7 Conclusion

We have developed a new, quasi-adaptive, variation of packet
routing and shown that it performs well. Message latency
times are consistently improved by factors of up to 5 over the
message latency times for wormhole routing. In all cases, the
tradeoff in message bandwidth appears negligible. We have
also introduced a set of communication instruction semantics
that should work well with our “new” routing scheme. In
future work we will examine buffer and packet size tradeoffs,
and address architectural implementation details,

Mean Message Times

Mean Message Times

St ttd

1st Wormhole
Last Wormhole
1st Fixed Pkt
Last Fixed Pkt
1st Adapt Pkt
Last Adapt Pkt

0.002

Fi

A I v T

0.004 0.006 0.008 0.010 0.012 0.014

Link Utilization (lighter loads)

gure 6a: Mean Message Times, Length = exp(512).

20000

10000

1st Wormhole
Last Wormhole
1st Fixed Pkt
Last Fixed Pkt
1st Adapt Pkt
Last Adapt Pkt

AERNEN

0
0.005

0.010 0.015 0.020 0.025

Link Utilization (heavier loads)

Figure 6b: Mean Message Times, Length = exp(512).

607

—

0.030

Mean Message Times

Mean Message Times

20000

1st Wormhole
Last Wormhole
1st Fixed Pkt
Last Fixed Pkt
1st Adapt Pkt
Last Adapt Pkt

A ENEEN

10000 -

0
0.002 0.004 0.0086 0.008 0.010 0.012
Link Utilization (lighter loads)
Figure 7a: Mean Message Times, Length = exp(2048).
30000
—+ 1st Wormhole
1 = Last Wormhole
—*- 1st Fixed Pkt
—- Last Fixed Pkt
200004 ™ 1stAdapt Pkt
-+ |ast Adapt Pkt
10000 T
1
O i L " L T — ™ | -
0.005 0.010 0.015 0.020 0.025 0.030

Link Utilization (heavier loads)
Figure 7b: Mean Message Times, Length = exp(2048).

608

References

[ABGSS5]

[ACBT7]

[AMSS8]

[Dal86]

[DS87]

[FMO*87]

[Gel81]

[GR88]

[Gun81]

[H]86]

[KK79]

Mauricio Arango, Hussein Badr, and David Gel-
ernter. Staged circuit switching. IEEE Trans-
actions on Computers, C-34:174-180, February
1985.

Steven Anderson and Marina C. Chen. Parallel
branch-and-bound algorithms on the hypercube.
In Michael T. Heath, editor, Hypercube Multi-
processors 1987, pages 309-317, SIAM, Philadel-
phia, 1987.

Tarek S. Abdel-Rahman and Trevor N. Mudge.
Parallel best first branch and bound algorithms
on hypercube multiprocessors. In Geoffrey C.
Fox, editor, Proceedings Third Conference on Hy-
percube Concurrent Computers and Applications,
ACM, 1988.

William J. Dally. On the Performance of k-ary
n-cube Interconnection Networks. Department of
Computer Science Technical Report 5228:TR:86,
Califomia Institute of Technology, 1986.

William J. Dally and Charles L. Seitz. Deadlock-
free message routing in multiprocessor intercon-
nection networks. IEEE Transactions on Comput-
ers, C-36:547-553, May 1987.

E. Felton, R. Morison, S. Otto, K. Barish, R.
Fatland, and F. Ho. Chess on a hypercube. In
Michael T. Heath, editor, Hypercube Multiproces-
sors 1987, pages 327-332, SIAM, Philadelphia,
1987.

David Gelemter. A dag-based algorithm for pre-
vention of store-and-forward deadlock in packet
networks. IEEE Transactions on Computers, C-
30:709-715, October 1981.

Dirk Grunwald and Dani¢l Reed. Multiprocessor
computer networks: measurements and prognosti-
cations. In Geoffrey C. Fox, editor, Proceedings
Third Conference on Hypercube Concurrent Com-
puters and Applications, ACM, 1988.

K. D. Gunther. Prevention of deadlocks in packet-
switched data transport systems. I[EEE Trans-
actions on Communications, COM-29:512--524,
April 1981.

Ching-Tien Ho and Lennart Johnsson. Distributed
routing algorithms for broadcasting and personal-
ized communication in hypercubes. In Proceed-
ings of the 1986 International Conference on Par-
allel Processing, pages 640—648, IEEE, 1986.

P. Kemani and L. Kleinrock. Virtual cut-
through: a new computer communication switch-
ing technique. In Computer Networks, Volume 3,
pages 267-286, North-Holland, Amsterdam, 1979.

609

[MBAS7]

(MS380]

[Qui87]

[RF87]

[SWar]

[Tou80]

[TU79]

[WLYS85]

Trevor N. Mudge, Gregory D. Buzzard, and
Tarek S. Abdel-Rahman. A high performance
operating system for the ncube. In Michael T.
Heath, editor, Hypercube Multiprocessors 1987,
pages 90-99, SIAM, Philadelphia, 1987.

P. M. Merlin and P. J. Schweitzer. Deadlock
avoidance in store-and-forward networks—1I: store-
and-forward deadlock. IEEE Transactions on
Communications, COM-28:345-354, March 1980.

Michael J. Quinn. Implementing best-first branch-
and-bound algorithms on hypercube multicomput-
ers. In Michael T. Heath, editor, Hypercube Multi-
processors 1987, pages 318-326, SIAM, Philadel-
phia, 1987.

Daniel A. Reed and Richard M. Fujimoto. Multi-
computer Networks: Message-Based Parallel Pro-
cessing, pages 138-144. The MIT Press, 1987.

Quentin F. Stout and Bruce A. Wagar. Intensive
hypercube communication I: prearranged commu-
nication in link-bound machines. Journal of Par-
allel and Distributed Computing, to appear.

S. Toueg. Deadlock-and livelock-free packer
switching networks. In Proceedings of the 12th
ACM Symposium on the Theory of Computing,
pages 94-99, 1980.

S. Toueg and J. D. Ullman. Deadlock-free packet
switching networks. In Proceedings of the 11th
ACM Symposium on the Theory of Computing,
pages 89-98, 1979.

Benjamin W. Wah, Guo-jie Li, and Chee Fen Yu.
Multiprocessing of combinatorial search problems.
IEEE Computer, 93-108, June 1985.

